High School Mathematics Contest
The departments of
MATHEMATICS and MATHEMATICS EDUCATION
EAST CAROLINA UNIVERSITY

COMPREHENSIVE: 2011

SOLUTIONS TO SELECT QUESTIONS
 ($\mathrm{N}=178$)

1. If $\sin x-\cos x=\frac{\sqrt{3}}{2}$, then $(\sin x)(\cos x)=$
(A) 1
(B) $\frac{\sqrt{3}}{4}$
(C) $\frac{1}{2}$
(D) $\frac{1}{4}$
(E) $\frac{1}{8}$

Correct Answer: (E)
Answer Distribution: (A) 10.1\%
(B) 30.9%
(C) 28.1%
(D) 13.9%
(E) 12.4% (Other) 5.1%

Solution:

$$
\begin{aligned}
& (\sin x-\cos x)^{2}=\left(\frac{\sqrt{3}}{2}\right)^{2} \\
\rightarrow & \sin ^{2} x-2 \sin x \cos x+\cos ^{2} x=\frac{3}{4} \\
& \text { noting, } \sin ^{2} x+\cos ^{2} x=1 \\
\rightarrow & \sin x \cos x=\frac{1}{8}
\end{aligned}
$$

2. The determinant $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & a+c \\ 1 & c & a+b\end{array}\right|=$
(A) 0
(B) 1
(C) -1
(D) $a+b+c$
(E) $(a+b)(b+c)(a+c)$

Correct Answer: (A)
Answer Distribution:
(A) 10.7%
(B) 18.0%
(C) 17.4%
(D) 22.2%
(E) 30.9\% (Other) 2.8\%

Solution:

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{lll}
1 & a & b+c \\
1 & b & a+c \\
1 & c & a+b
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{ll}
b & a+c \\
c & a+b
\end{array}\right]-\operatorname{det}\left[\begin{array}{ll}
a & b+c \\
c & a+b
\end{array}\right]+\operatorname{det}\left[\begin{array}{ll}
a & b+c \\
b & a+c
\end{array}\right] \\
& =b(a+b)-c(a+c)-a(a+b)+c(b+c)+a(a+c)-b(b+c) \\
& =0
\end{aligned}
$$

3. The prime factorization of 168,750 is $(2)^{2}(3)^{3}(5)^{5}$. How many factors of 168,750 are there?
(A) 72
(B) 60
(C) 38
(D) 30
(E) 10

Correct Answer: (A)
Answer Distribution: (A) 7.3% (B) 12.4% (C) $16.9 \% ~(D) 26.4 \% ~(E) ~ 33.1 \% ~(O t h e r) ~ 3.9 \% ~$
Solution:

$$
(2+1)(3+1)(5+1)=72
$$

Any factor will be of the form $(2)^{x}(3)^{y}(5)^{2}$, where x can be $0,1,2$ ($2+1$ choices), where y can be $0,1,2,3$ ($3+1$ choices), and z can be $0,1,2,3,4,5(5+1)$ choices.
4. Which of the following are fourth roots of $-8+8 i \sqrt{3}$?
I. $\sqrt{3}+i$
II. $-\sqrt{3}-i$
III. $1-i \sqrt{3}$
(A) I Only
(B) II only
(C) III only
(D) I \& III only
(E) all 3

Correct Answer: (E)
Answer Distribution: (A) 10.7\%
(B) 14.6%
(C) 32.6%
(D) 19.7%
(E) 15.2% (Other) 7.3%

Solution:
(I). $\sqrt{3}+i$ squared yields $2+2 i \sqrt{3}$ and squared again yields $-8+8 i \sqrt{3}$.
(II). $-\sqrt{3}-i$ is simply the negative of (I) and thus will have the same $4^{\text {th }}$ power.
(III). $1-i \sqrt{3}$ squared yields $-2-2 i \sqrt{3}$ which is negative of the square of (I).

Hence, all have same $4^{\text {th }}$ power.
5. If $a+b=1$ and $a^{2}+b^{2}=2$, then $a^{3}+b^{3}=$
(A) $2\left(\frac{1-\sqrt{3}}{2}\right)^{3}$
(B) 2
(C) 2.5
(D) 3
(E) $2\left(\frac{1+\sqrt{3}}{2}\right)^{3}$

Correct Answer: (C)

Solution:

$$
\begin{aligned}
& (a+b)^{2}=1^{2} \\
\rightarrow & a^{2}+2 a b+b^{2}=1 \\
\rightarrow & \left(a^{2}+b^{2}\right)+2 a b=1 \\
\rightarrow & 2+2 a b=1 \\
\rightarrow & a b=-0.5
\end{aligned}
$$

$$
(a+b)^{3}=1^{3}
$$

$$
\rightarrow a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=1
$$

$$
\rightarrow\left(a^{3}+b^{3}\right)+3 a b(a+b)=1
$$

$$
\rightarrow\left(a^{3}+b^{3}\right)+3(-0.5)(1)=1
$$

$$
\rightarrow a^{3}+b^{3}=2.5
$$

